

INDEX
LIST OF EXPERIMENTS

S. No

Date

Name of the Experiment

Page no

Signature

1a Generation of Continuous Time Signals

1b

Generation of Discrete Time Signals

2

Correlation of Sequences

3

Linear and Circular Convolutions

4

Spectrum Analysis using DFT

5a
 Design of FIR Filters

(rectangular window design)

5b
 Design of FIR Filters (Hanning

window design)

6

Design of IIR Filters

7

Multirate Filters

8

Equalization

Using CC Studio

9
 Study of Architecture of Digital Signal Processor

10

Linear Convolution

11

Circular Convolution

12

FFT Implementation

13

Waveform Generation

 14

Interfacing of LED Using TMS320C6713 Kit

INTRODUCTION

MATLAB is a software package for high performance numerical computation

and visualization provides an interactive environment with hundreds of a built in

functions for technical computation, graphics and animation. The MATLAB name

stands for Matrix laboratory.

At its core, MATLAB is essentially a set (a “toolbox”) of routines (called “m files” or

“mex files”) that sit on your computer and a window that allows you to create new variables

with names (e.g. voltage and time) and process those variables with any of those routines

(e.g. plot voltage against time, find the largest voltage, etc).

It also allows you to put a list of your processing requests together in a file and save

that combined list with a name so that you can run all of those commands in the same

order at some later time. Furthermore, it allows you to run such lists of commands such

that you pass in data. and/or get data back out (i.e. the list of commands is like a

function in most programming languages). Once you save a function, it becomes part of

your toolbox. For those with computer programming backgrounds: Note that MATLAB

runs as an interpretive language (like the old BASIC). That is, it does not need to be

compiled. It simply reads through each line of the function, executes it, and then goes

on to the next line.

DSP Development System

• Testing the software and hardware tools with Code Composer Studio

• Use of the TMS320C6713 DSK

• Programming examples to test the tools

Digital signal processors such as the TMS320C6x (C6x) family of processors are like fast special-

purpose microprocessors with a specialized type of architecture and an instruction set appropriate for

signal processing. The C6x notation is used to designate a member of Texas Instruments’ (TI)

TMS320C6000 family of digital signal processors. The architecture of the C6x digital signal processor is

very well suited for numerically intensive calculations. Based on a very-long-instruction-word (VLIW)

architecture, the C6x is considered to be TI’s most powerful processor. Digital signal processors are used for

a wide range of applications, from communications and controls to speech and image processing. The

general-purpose digital signal processor is dominated by applications in communications (cellular).

Applications embedded digital signal processors are dominated by consumer products. They are found in

cellular phones, fax/modems, disk drives, radio, printers, hearing aids, MP3 players, high-definition

television (HDTV), digital cameras, and so on. These processors have become the products of choice for a

number of consumer applications, since they have become very cost-effective. They can handle different

tasks, since they can be reprogrammed readily for a different application.

DSP techniques have been very successful because of the development of low-cost software and

hardware support. For example, modems and speech recognition can be less expensive using DSP

techniques.DSP processors are concerned primarily with real-time signal processing. Real-time processing

requires the processing to keep pace with some external event, whereas non-real-time processing has no

such timing constraint. The external event to keep pace with is usually the analog input. Whereas analog-

based systems with discrete electronic components such as resistors can be more sensitive to temperature

changes, DSP-based systems are less affected by environmental conditions.

DSP processors enjoy the advantages of microprocessors. They are easy to use, flexible, and

economical. A number of books and articles address the importance of digital signal processors for a

number of applications .Various technologies have been used for real- time processing, from fiber optics

for very high frequency to DSPs very suitable for the audio-frequency range. Common applications using

these processors have been for frequencies from 0 to 96 kHz. Speech can be sampled at 8 kHz (the rate at

which samples are acquired), which implies that each value sampled is acquired at a rate of 1/ (8 kHz) or

0.125ms. A commonly used sample rate of a compact disk is 44.1 kHz. Analog/digital (A/D) - based

boards in the megahertz sampling rate range are currently available.

Ex. No: 1a

Date:

GENERATION OF CONTINUOUS TIME SIGNALS

AIM:

To generate a functional sequence of a signal (Sine, Cosine, triangular, Square, Saw

tooth and sinc) using MATLAB function.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Generation of Continuous Time Signals)

%Program for sine wave

t=0:0.1:10;

y=sin(2*pi*t);

subplot(3,3,1);

plot(t,y,'k');

xlabel('Time');

ylabel('Amplitude');

title('Sine wave');

%Program for cosine wave

t=0:0.1:10;

y=cos(2*pi*t);

subplot(3,3,2);

plot(t,y,'k');

xlabel('Time');

ylabel('Amplitude');

title('Cosine wave');

%Program for square wave

t=0:0.001:10;

y=square(t);

subplot(3,3,3);

plot(t,y,'k');

xlabel('Time');

ylabel('Amplitude');

title('Square wave');

%Program for sawtooth wave

t=0:0.1:10;

y=sawtooth(t);

subplot(3,3,4);

plot(t,y,'k');

xlabel('Time');

ylabel('Amplitude');

title('Sawtooth wave');

%Program for Triangular wave

t=0:.0001:20;

y=sawtooth(t,.5); % sawtooth with 50% duty cycle

(triangular)

subplot(3,3,5);

plot(t,y);

ylabel ('Amplitude');

xlabel ('Time Index');

title('Triangular waveform');

%Program for Sinc Pulse

t=-10:.01:10;

y=sinc(t);

axis([-10 10 -2 2]);

subplot(3,3,6)

plot(t,y)

ylabel ('Amplitude');

xlabel ('Time Index');

title('Sinc Pulse');

% Program for Exponential Growing signal

t=0:.1:8;

a=2;

y=exp(a*t);

subplot(3,3,7);

plot(t,y);

ylabel ('Amplitude');

xlabel ('Time Index');

title('Exponential growing Signal');

% Program for Exponential Growing signal

t=0:.1:8;

a=2;

y=exp(-a*t);

subplot(3,3,8);

plot(t,y);

ylabel ('Amplitude');

xlabel ('Time Index');

title('Exponential decaying Signal');

OUTPUT: (Generation of Continuous Time Signals)

RESULT:

Thus the MATLAB programs for functional sequence of a signal (Sine, Cosine,

triangular, Square, Saw tooth and sinc) using MATLAB function written and the results were

plotted.

Ex. No: 1b

Date:

AIM:

GENERATION OF DISCRETE TIME SIGNALS

To generate a discrete time signal sequence (Unit step, Unit ramp, Sine, Cosine,

Exponential, Unit impulse) using MATLAB function.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Generation of Discrete Time Signals)
%Program for unit step sequence

clc;

N=input('Enter the length of unit step sequence(N)= ');

n=0:1:N-1;

y=ones(1,N);

subplot(3,2,1);

stem(n,y,'k');

xlabel('Time')

ylabel('Amplitude')

title('Unit step sequence');

%Program for unit ramp sequence

N1=input('Enter the length of unit ramp sequence(N1)= ');

n1=0:1:N1-1;

y1=n1;

subplot(3,2,2);

stem(n1,y1,'k');

xlabel('Time');

ylabel('Amplitude');

title('Unit ramp sequence');

%Program for sinusoidal sequence

N2=input('Enter the length of sinusoidal sequence(N2)=

');

n2=0:0.1:N2-1;

y2=sin(2*pi*n2);

subplot(3,2,3);

stem(n2,y2,'k');

xlabel('Time');

ylabel('Amplitude');

title('Sinusoidal sequence');

%Program for cosine sequence

N3=input('Enter the length of the cosine sequence(N3)=');

n3=0:0.1:N3-1;

y3=cos(2*pi*n3);

subplot(3,2,4);

stem(n3,y3,'k');

xlabel('Time');

ylabel('Amplitude');

title('Cosine sequence');

%Program for exponential sequence

N4=input('Enter the length of the exponential

sequence(N4)= ');

n4=0:1:N4-1;

a=input('Enter the value of the exponential sequence(a)=

');

y4=exp(a*n4);

subplot(3,2,5);

stem(n4,y4,'k');

xlabel('Time');

ylabel('Amplitude');

title('Exponential sequence');

%Program for unit impulse

n=-3:1:3;

y=[zeros(1,3),ones(1,1),zeros(1,3)];

subplot(3,2,6);

stem(n,y,'k');

xlabel('Time');

ylabel('Amplitude');

title('Unit impulse');

OUTPUT: (Generation of Discrete Time Signals)

RESULT:

Thus the MATLAB programs for discrete time signal sequence (Unit step, Unit

ramp, Sine, Cosine, Exponential, Unit impulse) using MATLAB function written and the

results were plotted.

Ex. No: 2

Date:

AIM:

CORRELATION OF SEQUENCES

To write MATLAB programs for auto correlation and cross correlation.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Cross-Correlation of the Sequences)

clc;

clear all;

close all;

x=input('Enter the sequence 1: ');

h=input('Enter the sequence 2: ');

y=xcorr(x,h);

figure;

subplot(3,1,1);

stem(x);

xlabel('n->');

ylabel('Amplitude->');

title('Input sequence 1');

subplot(3,1,2);

stem(fliplr(y));

stem(h);

xlabel('n->');

ylabel('Amplitude->');

title('Input sequence 2');

subplot(3,1,3);

stem(fliplr(y));
xlabel('n->');

ylabel('Amplitude->');

title('Output sequence');

disp('The resultant is');

fliplr(y);

OUTPUT: (Cross-Correlation of the Sequences)

Enter the sequence 1: [1 3 5 7]

Enter the sequence 2: [2 4 6 8]

PROGRAM: (Auto Correlation Function)

clc;

close all;

clear all;

x=input('Enter the sequence 1: ');

y=xcorr(x,x);

figure;

subplot(2,1,1);

stem(x);

ylabel('Amplitude->');

xlabel('n->');

title('Input sequence');

subplot(2,1,2);

stem(fliplr(y));

ylabel('amplitude');

xlabel('n->');

title('Output sequence');

disp('the resultant is ');

fliplr(y);

OUTPUT: (Auto Correlation Function)

Enter the sequence [1 2 3 4]

RESULT:

Thus the MATLAB programs for auto correlation and cross correlation written and

the results were plotted.

Ex. No: 3

Date:

AIM:

LINEAR AND CIRCULAR CONVOLUTIONS

To write MATLAB programs to find out the linear convolution and Circular

convolution of two sequences.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Linear Convolution)

% linear convolution

close all

clear all

x=input('Enter x: ')

h=input('Enter h: ')

m=length(x);

n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)];

for i=1:n+m-1

Y(i)=0;

for j=1:i

end

Y

end

Y(i)=Y(i)+X(j)*H(i-j+1);

stem(Y);

ylabel('Y[n]');

xlabel(' ---- >n');

title('Convolution of Two Signals without conv

function');

INPUT:

enter x: [1 2 3

x = 1 2 3 4 5

Enter h: [1 2 3

h = 1 2 3 1

Y = 1 4 10 17

OUTPUT: (Linear Convolution)

4 5]

1]

24 25 19 5

PROGRAM: (Circular Convolution)

clc; clear;

a = input('enter

b = input('enter

n1=length(a);

n2=length(b);

N=max(n1,n2);

the sequence x(n) = ');

the sequence h(n) = ');

x = [a zeros(1,(N-n1))];

for i = 1:N

k = i;

for j = 1:n2

H(i,j)=x(k)* b(j);

k = k-1;

if (k == 0)

k = N;

end end end

y=zeros(1,N);

M=H';

for j = 1:N

for i = 1:n2

y(j)=M(i,j)+y(j);

end end

disp('The output

disp(y);

stem(y);

sequence is y(n)= ');

title('Circular Convolution');

xlabel('n');

ylabel('y(n)');

OUTPUT: (Circular Convolution)
Enter the sequence x(n) = [1 2 3 4]

Enter the sequence h(n) = [1 2 1 1]

The output sequence is y(n)= 14 11 12 13

RESULT:

Thus the MATLAB

programs for linear convolution and circular convolution

written and the results were plotted.

Ex. No: 4

Date:

AIM:

SPECTRUM ANALYSIS USING DFT

To write MATLAB program for spectrum analyzing signal using DFT.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

9. Start the MATLAB program.

10. Open new M-file

11. Type the program

12. Save in current directory

13. Compile and Run the program

14. If any error occurs in the program correct the error and run it again

15. For the output see command window\ Figure window

16. Stop the program.

PROGRAM: (Spectrum Analysis Using DFT)

N=input('type length of DFT= ');

T=input('type sampling period= ');

freq=input('type the sinusoidal freq= ');

k=0:N-1;

f=sin(2*pi*freq*1/T*k);

F=fft(f);

stem(k,abs(F));

grid on;

xlabel('k');

ylabel('X(k)');

INPUT:

type length of DFT=32

type sampling period=64

type the sinusoidal freq=11

OUTPUT: (Spectrum Analysis Using DFT)

RESULT:

Thus the Spectrum Analysis of the signal using DFT is obtained using MATLAB.

Ex. No: 5a

Date:

AIM:

DESIGN OF FIR FILTERS

(RECTANGULAR WINDOW DESIGN)

To write a program to design the FIR low pass, High pass, Band pass and Band stop

filters using RECTANGULAR window and find out the response of the filter by using

MATLAB.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Rectangular Window)

clear all;

rp=input('Enter the PB ripple rp =');

rs=input('Enter the SB ripple rs =');

fp=input('Enter the PB ripple fp =');

fs=input('Enter the SB ripple fs =');

f=input('Enter the sampling frequency f =');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

den=14.6*(fs-fp)/f;

n=ceil(num/den);

n1=n+1;

if(rem(n,2)~=0)

n=n1;

n=n-1;

end;

y=boxcar(n1);

%LPF
b=fir1(n,wp,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

xlabel('Normalized frequency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF LPF');

%HPF
b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);

plot(o/pi,m);

xlabel('Normalized frequency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF HPF');

%BPF
wn=[wp ws];

b=fir1(n,wn,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,3);

plot(o/pi,m);

xlabel('Normalized frequency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF BPF');

%BSF
b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4);

plot(o/pi,m);

G
 a

 in
 i

n
 d

 b
 --

--
- -

-.

xlabel('Normalized frequency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF BSF');

OUTPUT: (Rectangular Window)

Enter the PB ripple rp =.03

Enter the SB ripple rs =.05

Enter the PB ripple fp =2000

Enter the SB ripple fs =3000

Enter the sampling frequency f =9000

MAGNITUDE RESPONSE OF LPF
50

MAGNITUDE RESPONSE OF HPF
50

0 0

-50 -50

-100
0 0.5 1

Normalized freqency ----- >

-100
0 0.5 1

Normalized freqency ---- >

MAGNITUDE RESPONSE OF BPF

50

MAGNITUDE RESPONSE OF BSF

20

0

-50

0

-20

-40

-100
0 0.5 1

Normalized freqency ----- >

-60
0 0.5 1

Normalized freqency ---- >

RESULT:

Thus the program to design FIR low pass, high pass, band pass and band stop Filters

using RECTANGULAR Window was written and response of the filter using MATLAB was

executed.

G
 a

 in
 i

n
 d

 b
 --

--
-

--
.

G
 a

 in
 i

n
 d

 b
 --

--
- -

-.

G
 a

 in
 i

n
 d

 b
 --

--
-

--
.

Ex. No: 5b

Date:

AIM:

DESIGN OF FIR FILTERS

(HANNING WINDOW DESIGN)

To write a program to design the FIR low pass, High pass, Band pass and Band stop

filters using HANNING window and find out the response of the filter by using MATLAB.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Hanning Window)

clear all;

rp=input('Enter the PB ripple rp =');

rs=input('Enter the SB ripple rs =');

fp=input('Enter the PB ripple fp =');

fs=input('Enter the SB ripple fs =');

f=input('Enter the sampling frequency f =');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

den=14.6*(fs-fp)/f;

n=ceil(num/den);

n1=n+1;

if(rem(n,2)~=0)

n=n1;

n=n-1;

end;

y=hanning(n1);

%LPF
b=fir1(n,wp,y);

[h,O]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(O/pi,m);

xlabel('Normalized freqency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF LPF');

%HPF
b=fir1(n,wp,'high',y);

[h,O]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);

plot(O/pi,m);

xlabel('Normalized freqency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF HPF');

%BPF
wn=[wp ws];

b=fir1(n,wn,y);

[h,O]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,3);

plot(O/pi,m);

xlabel('Normalized freqency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF BPF');

%BSF
b=fir1(n,wn,'stop',y);

[h,O]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4);

plot(O/pi,m);

xlabel('Normalized freqency ------ >');

ylabel('Gain in db ----- --.');

title('MAGNITUDE RESPONSE OF BSF');

OUTPUT: (Hanning Window)

Enter the PB ripple rp =.03

Enter the SB ripple rs =.02

Enter the PB ripple fp =1500

Enter the SB ripple fs =2000

Enter the sampling frequency f =9000

MAGNITUDE RESPONSE OF LPF

50

MAGNITUDE RESPONSE OF HPF
50

0

-50

-100

0

-50

-150
0 0.5 1

Normalized freqency ------ >

-100
0 0.5 1

Normalized freqency ----- >

MAGNITUDE RESPONSE OF BPF

0

MAGNITUDE RESPONSE OF BSF

5

0

-50

-5

-100

0 0.5 1

Normalized freqency ------ >

-10

0 0.5 1

Normalized freqency ----- >

RESULT:

Thus the program to design FIR low pass, high pass, band pass and band

stop Filters using HANNING Window was written and response of the filter using

MATLAB was executed.

G
a

in
 i
n
 d

b
 --

--
-
--

.
G

a
in

 i
n

 d
b
 --

--
-
--

.

G
a

in
 i
n

 d
b
 --

--
-
--

.
G

a
in

 i
n
 d

b
 --

--
-
--

.

Ex. No: 6

Date:

AIM:

DESIGN OF IIR FILTERS

To write a program to design the IIR Filter using Impulse Invariant Transformation

method and find out the Magnitude response and Pole Zero Plot by using MATLAB.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (IIR Butterworth Filter using Impulse Method)

N=input('ENTER THE FILTER ORDER N = ');

fs=input('ENTER THE SAMPLING FREQUENCY fs = ');

fc=input('ENTER THE CUT-OFF FREQUENCY fc = ');

wc=2*pi*fc;

[na,da]=butter(N,wc,'s');

[n,d]=impinvar(na,da,fs);

[h,f]=freqz(n,d,512,fs);

gain=20*log10(abs(h));

subplot(2,1,1);

plot(f,gain);

xlabel('Frequency --- >');

ylabel('Magnitude --- >');

title('AMPLITUDE RESPONSSE');

subplot(2,1,2);

zplane(n,d);

z=roots(n); p=roots(d);

xlabel('Real part --- >');

ylabel('Imaginary part --- >');

title('POLE-ZERO PLOT');

OUTPUT: (IIR Butterworth Filter using Impulse Method)

ENTER THE FILTER ORDER N = 2

ENTER THE SAMPLING FREQUENCY fs = 1280

ENTER THE CUT-OFF FREQUENCY fc = 150

AMPLITUDE RESPONSSE
0

-5

-10

-15

-20
0 100 200 300 400 500 600 700

Frequency -- >

POLE-ZERO PLOT

1

0.5

0

-0.5

-1

-3 -2 -1 0 1 2 3

Real part --- >

M
a

g
n

it
u

d
e

 -
-

>

Im
a

g
in

a
ry

 p
a

rt
 -

-
>

PROGRAM: (IIR Butterworth Using Bilinear Transformation)

wp=input('ENTER THE PASSBAND EDGE FREQUENCIES wp= ');

ws=input('ENTER THE STOPBAND EDGE FREQUENCIES ws= ');

rp=input('ENTER THE PASSBAND RIPPLE rp= ');

rs=input('ENTER THE STOPBAND RIPPLE rs= ');

fs=input('ENTER THE SAMPLING FREQUENCY fs= ');

wpn=wp/(fs/2);

wsn=ws/(fs/2);

[N,fc]=buttord(wpn,wsn,rp,rs);

disp('ORDER OF THE FILTER');

disp(N);

[n,d]=butter(N,wpn);

[h,f]=freqz(n,d,512,fs);

gain=20*log10(abs(h));

an=angle(h);

subplot(2,1,1);

plot(f,gain);

xlabel('FREQUENCY --- >');

ylabel('MAGNITUDE');

title('AMPLITUDE RESPONSE');

subplot(2,1,2);

zplane(n,d);

z=roots(n);

p=roots(d);

xlabel('RREAL PART --- >');

ylabel('IMAGINARY PART');

title('POLE-ZERO PLOT');

INPUT: (IIR Butterworth Using Bilinear Transformation)

Enter the passband edge frequencies wp= [200 300]

Enter the stopband edge frequencies ws= [50 450]

Enter the passband ripple rp= 3

Enter the stopband ripple rs= 20

Enter the sampling frequency fs= 1000

Order of the filter 2

OUTPUT: (IIR Butterworth Using Bilinear Transformation)

AMPLITUDE RESPONSE

0

-50

-100

-150

0 50 100 150 200 250 300 350 400 450 500

FREQUENCY --- >

POLE-ZERO PLOT

1

0.5

0

-0.5

-1

-3 -2 -1 0 1 2 3

RREAL PART --- >

PROGRAM: (Chebyshev Type 1 Band pass Filter)

clear all;

alphap=2; %pass band attenuation in dB

alphas=20; %stop band attenuation in dB

wp=[.2*pi,.4*pi];

ws=[.1*pi,.5*pi];

%To find cutoff frequency and order of the filter

[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas);

%system function of the filter

[b,a]=cheby1(n,alphap,wn);

w=0:.01:pi;

[h,ph]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

subplot(2,1,1);

plot(ph/pi,m);

grid;

ylabel('Gain in dB..');

xlabel('Normalised frequency..');

subplot(2,1,2);

plot(ph/pi,an);

grid;

ylabel('Phase in radians..');

xlabel('Normalised frequency..');

M
A

G
N

IT
U

D
E

IM

A
G

IN
A

R
Y

 P
A

R
T

2

2

OUTPUT: (Chebyshev Type 1 Band pass Filter)

0

-100

-200

-300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency..

4

2

0

-2

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency..

PROGRAM: (Chebyshev II Band Reject Filter)

clear all;

alphap=2; %pass band attenuation in dB

alphas=20; %stop band attenuation in dB

ws=[.2*pi,.4*pi];

wp=[.1*pi,.5*pi];

%To find cutoff frequency and order of the filter

[n,wn]=cheb2ord(wp/pi,ws/pi,alphap,alphas);

%system function of the filter

[b,a]=cheby2(n,alphas,wn,'stop');

w=0:.01:pi;

[h,ph]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

subplot(2,1,1);

plot(ph/pi,m);

grid;

ylabel('Gain in dB..');

xlabel('Normalised frequency..');

subplot(2,1,2);

plot(ph/pi,an);

grid;

ylabel('Phase in radians..');

xlabel('Normalised frequency..');

G
a

in
 in

 d
B

 ..

P
 h

a
s
 e

 in
 r
a

d
ia

n
s
 ..

OUTPUT: (Chebyshev II Band Reject Filter)

20

0

-20

-40

-60
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency..

4

2

0

-2

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency..

RESULT:

Thus the program to design IIR BUTTERWORTH Low Pass Filter using Impulse

Invariant Transformation method and find out the Magnitude response and Pole Zero Plot

by using MATLAB was executed.

G
a
in

in
d
B

..

P
h
a
s
e
in

ra
d
ia

n
s
..

Ex. No: 7

Date:

AIM:

MULTIRATE FILTERS

To design linear-phase FIR Lth-band filters of the length N =31, with L = 3 and with

the roll-off factors: ρ = 0.2, 0.4, and 0.6. Plot the impulse responses and the magnitude

responses for all designs.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Multirate Filters)

close all, clear all

N =31; % Filter length

Nord = N-1; % Filter order

L = 3;

ro1 = 0.2; % Roll-off

factor

h1 = firnyquist(Nord,L,ro1); % Filter design

ro2 = 0.4; % Roll-off

factor

h2 = firnyquist(Nord,L,ro2); % Filter design

ro3 = 0.6; % Roll-off

factor

h3 = firnyquist(Nord,L,ro3); % filter design

figure (1)

subplot(3,1,1)

stem(0:N-1,h1,'b')

axis([0,30,-0.2,0.5])

ylabel('h_1[n]')

title('Figure 1')

legend('h1')

subplot(3,1,2)

stem(0:N-1,h2,'k')

axis([0,30,-0.2,0.5])

ylabel('h_2[n]')

legend('h2')

subplot(3,1,3)

stem(0:N-1,h3,'r')

axis([0,30,-0.2,0.5])

xlabel('n')

ylabel('h_3[n]')

legend('h3')

% Computing frequency responses

[H1,f] = freqz(h1,1,256,2);

[H2,f] = freqz(h2,1,256,2);

[H3,f] = freqz(h3,1,256,2);

figure (2)

plot(f,abs(H1),'b',f,abs(H2),'k',f,abs(H3),'r'), grid

title ('Figure 2')

axis([0,1,0,1.1])

xlabel('\omega/\pi')

ylabel('Magnitude')

legend('|H_1(e^j^\omega)|','|H_2(e^j^\omega)|','|H_3(e^j^

\omega)|')

OUTPUT: (Multirate Filters)

RESULT:

Thus the linear phase Lth band filter is designed and the magnitude response of the

filter is obtained using MATLAB.

Ex. No: 8

Date:

AIM:

EQUALIZATION

To write MATLAB programs for equalization.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : MATLAB R2014a

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Equalization)

clc;clear all;

close all;

M=3000;

T=2000;

dB=25;

L=20;

ChL=5;

EqD=round((L+ChL)/2);

Ch=randn(1,ChL+1)+sqrt(-1)*randn(1,ChL+1);

Ch=Ch/norm(Ch);

TxS=round(rand(1,M))*2-1;
TxS=TxS+sqrt(-1)*(round(rand(1,M))*2-1);

x=filter(Ch,1,TxS);

n=randn(1,M);

n=n/norm(n)*10^(-dB/20)*norm(x);

x=x+n; K=M-L;

X=zeros(L+1,K);

for i=1:K

X(:,i)=x(i+L:-1:i).';

end

e=zeros(1,T-10);

c=zeros(L+1,1);

mu=0.001;

for i=1:T-10

e(i)=TxS(i+10+L-EqD)-c'*X(:,i+10);

c=c+mu*conj(e(i))*X(:,i+10);

end

sb=c'*X;

sb1=sb/norm(c);

sb1=sign(real(sb1))+sqrt(-1)*sign(imag(sb1));

start=7;

sb2=sb1-TxS(start+1:start+length(sb1));

SER=length(find(sb2~=0))/length(sb2);

disp(SER);

subplot(2,2,1),

plot(TxS,'*');

grid,title('Input symbols'); xlabel('real

part'),ylabel('imaginary part')

axis([-2 2 -2 2])

subplot(2,2,2),

plot(x,'o');

grid, title('Received samples'); xlabel('real part'),

ylabel('imaginary part')

subplot(2,2,3),

plot(sb,'o');

grid, title('Equalized symbols'), xlabel('real part'),

ylabel('imaginary part')

subplot(2,2,4),

plot(abs(e));

grid, title('Convergence'), xlabel('n'),

ylabel('error signal')

OUTPUT: (Equalization)

RESULT:

Thus the equalization program was designed and developed.

DSP PROCESSOR EXPERIMENTS

Ex. No: 9

Date:

STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR

AIM:

To study the Architecture of TMS320VC67XX DSP processor.

INTRODUCTION

The hardware experiments in the DSP lab are carried out on the Texas Instruments

TMS320C6713 DSP Starter Kit (DSK), based on the TMS320C6713 floating point DSP

running at 225MHz. The basic clock cycle instruction time is 1/(225 MHz)= 4.44

nanoseconds. During each clock cycle, up to eight instructions can be carried out in parallel,

achieving up to 8×225 = 1800 million instructions per second (MIPS). The DSK board

includes a 16MB SDRAM memory and a 512KB Flash ROM. It has an on-board 16-bit audio

stereo codec (the Texas Instruments AIC23B) that serves both as an A/D and a D/A

converter. There are four 3.5 mm audio jacks for microphone and stereo line input, and

speaker and headphone outputs. The AIC23 codec can be programmed to sample audio inputs

at the following sampling rates: fs = 8, 16, 24, 32, 44.1, 48, 96 kHz

The ADC part of the codec is implemented as a multi-bit third-order noise-shaping

delta-sigma converter) that allows a variety of oversampling ratios that can realize the above

choices of fs. The corresponding oversampling decimation filters act as anti-aliasing pre-

filters that limit the spectrum of the input analog signals effectively to the Nyquist interval

[−fs/2,fs/2]. The DAC part is similarly implemented as a multi-bit second-order noise-

shaping delta-sigma converter whose oversampling interpolation filters act as almost ideal

reconstruction filters with the Nyquist interval as their pass band.

The DSK also has four user-programmable DIP switches and four LEDs that can be

used to control and monitor programs running on the DSP. All features of the DSK are

managed by the Code Composer Studio (CCS). The CCS is a complete integrated

development environment (IDE) that includes an optimizing C/C++ compiler, assembler,

linker, debugger, and program loader. The CCS communicates with the DSK via a USB

connection to a PC. In addition to facilitating all programming aspects of the C6713 DSP, the

CCS can also read signals stored on the DSP‟s memory, or the SDRAM, and plot them in the

time or frequency domains. The following block diagram depicts the overall operations

involved in all of the hardware experiments in the DSP lab. Processing is interrupt-driven at

the sampling rate fs, as explained below.

TMS320C6713 floating point DSP

The AIC23 codec is configured (through CCS) to operate at one of the above

sampling rates fs. Each collected sample is converted to a 16-bit two’s complement integer (a

short data type in C). The codec actually samples the audio input in stereo, that is, it collects

two samples for the left and right channels

ARCHITECTURE

The 67XX DSPs use an advanced, modified Harvard architecture that maximizes

processing power by maintaining one program memory bus and three data memory buses.

These processors also provide an arithmetic logic unit (ALU) that has a high degree of

parallelism, application-specific hardware logic, on-chip memory, and additional on-chip

peripherals. These DSP families also provide a highly specialized instruction set, which is the

basis of the operational flexibility and speed of these DSPs. Separate program and data

spaces allow simultaneous access to program instructions and data, providing the high degree

of parallelism. Two reads and one write operation can be performed in a single cycle.

Instructions with parallel store and application-specific instructions can fully utilize this

architecture. In addition, data can be transferred between data and program spaces. Such

parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that

can all be performed in a single machine cycle. Also included are the control mechanisms to

manage interrupts, repeated operations, and function calls.

‟

1. Central Processing Unit (CPU)

The CPU of the 67XX devices contains:

 A 40-bit arithmetic logic unit (ALU)

 Two 40-bit accumulators

 A barrel shifter

 A 17 -bit multiplier/adder

 A compare, select, and store unit (CSSU)

2. Arithmetic Logic Unit (ALU)

The ‟67XX devices perform 2s-complement arithmetic using a 40-bit ALU

and two 40-bit accumulators (ACCA and ACCB). The ALU also can perform

Boolean operations. The ALU can function as two 16-bit ALUs and perform two 16-

bit operations simultaneously when the C16 bit in status register 1 (ST1) is set.

3. Accumulators

The accumulators, ACCA and ACCB, store the output from the ALU or the

multiplier / adder block; the accumulators can also provide a second input to the ALU

or the multiplier / adder. The bits in each accumulator are grouped as follows:

 Guard bits (bits 32–39)

 A high-order word (bits 16–31)

 A low-order word (bits 0–15)

Instructions are provided for storing the guard bits, the high-order and the low-

order accumulator words in data memory, and for manipulating 32-bit accumulator

words in or out of data memory. Also, any of the accumulators can be used as

temporary storage for the other.

4. Barrel Shifter

The ‟67XX‟s barrel shifter has a 40-bit input connected to the accumulator or

data memory (CB, DB) and a 40-bit output connected to the ALU or data memory

(EB). The barrel shifter produces a left shift of 0 to 31 bits and a right shift of 0 to 16

bits on the input data. The shift requirements are defined in the shift-count field

(ASM) of ST1 or defined in the temporary register (TREG), which is designated as a

shift-count register. This shifter and the exponent detector normalize the values in an

accumulator in a single cycle. The least significant bits (LSBs) of the output are filled

with 0s and the most significant bits (MSBs) can be either zero-filled or sign-

extended, depending on the state of the sign-extended mode bit (SXM) of ST1.

Additional shift capabilities enable the processor to perform numerical scaling, bit

extraction, extended arithmetic, and overflow prevention operations

5. Multiplier/Adder

The multiplier / adder perform 17-bit 2s-complement multiplication with a 40-

bit accumulation in a single instruction cycle. The multiplier / adder block consists of

several elements: a multiplier, adder, signed/unsigned input control, fractional control,

a zero detector, a rounder (2s-complement), overflow/saturation logic, and TREG.

The multiplier has two inputs: one input is selected from the TREG, a data memory

operand, or an accumulator; the other is selected from the program memory, the data

memory, an accumulator, or an immediate value. The fast on-chip multiplier allows

the C67XX to perform operations such as convolution, correlation, and filtering

efficiently. In addition, the multiplier and ALU together execute multiply/accumulate

(MAC) computations and ALU operations in parallel in a single instruction cycle.

This function is used in determining the Euclid distance, and in implementing

symmetrical and least mean square (LMS) filters, which are required for complex

DSP algorithms.

6. Compare, Select, and Store Unit (CSSU)

The compare, select, and store unit (CSSU) performs maximum comparisons

between the accumulator’s high and low words, allows the test/control (TC) flag bit of

status register 0 (ST0) and the transition (TRN) register to keep their transition

histories, and selects the larger word in the accumulator to be stored in data memory.

The CSSU also accelerates Viterbi-type butterfly computation with optimized on-chip

hardware.

7. Program Control

Program control is provided by several hardware and software mechanisms:

The program controller decodes instructions, manages the pipeline, stores the

status of operations, and decodes conditional operations. Some of the hardware

elements included in the program controller are the program counter, the status and

control register, the stack, and the address-generation logic.

Some of the software mechanisms used for program control includes branches,

calls, and conditional instructions, are peat instruction, reset, and interrupt.

The C67XX supports both the use of hardware and software interrupts for

program control. Interrupt service routines are vectored through a re-locatable

interrupt vector table. Interrupts can be globally enabled / disabled and can be

individually masked through the interrupt mask register (IMR). Pending interrupts are

indicated in the interrupt flag register (IFR). For detailed information on the structure

of the interrupt vector table, the IMR and the IFR, see the device-specific data sheets.

8. Status Registers (ST0, ST1)

The status registers, ST0 and ST1, contain the status of the various conditions

and modes for the ‟67XX devices. ST0 contains the flags (OV, C, and TC) produced

by arithmetic operations and bit manipulations in addition to the data page pointer

(DP) and the auxiliary register pointer (ARP) fields. ST1 contains the various modes

and instructions that the processor operates on and executes.

9. Auxiliary Registers (AR0–AR7)

The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the central

arithmetic logic unit (CALU) and modified by the auxiliary register arithmetic units

(ARAUs). The primary function of the auxiliary registers is generating 16-bit

addresses for data space. However, these registers also can act as general-purpose

registers or counters.

10. Temporary Register (TREG)

The TREG is used to hold one of the multiplicands for multiply and

multiply/accumulate instructions. It can hold a dynamic (execution-time

programmable) shift count for instructions with a shift operation such as ADD, LD,

and SUB. It also can hold a dynamic bit address for the BITT instruction. The EXP

instruction stores the exponent value computed into the TREG, while the NORM

instruction uses the TREG value to normalize the number. For ACS operation of

Viterbi decoding, TREG holds branch metrics used by the DADST and DSADT

instructions.

11. Transition Register (TRN)

The TRN is a 16-bit register that is used to hold the transition decision for the

path to new metrics to perform the Viterbi algorithm. The CMPS (compare, select,

max, and store) instruction updates the contents of the TRN based on the comparison

between the accumulator high word and the accumulator low word.

12. Stack-Pointer Register (SP)

The SP is a 16-bit register that contains the address at the top of the system

stack. The SP always points to the last element pushed onto the stack. The stack is

manipulated by interrupts, traps, calls, returns, and the PUSHD, PSHM, POPD, and

POPM instructions. Pushes and pops of the stack pre decrement and post increment,

respectively, all 16 bits of the SP.

‟

‟

13. Circular-Buffer-Size Register (BK)

The 16-bit BK is used by the ARAUs in circular addressing to specify the data

block size.

14. Block-Repeat Registers (BRC, RSA, REA)

The block-repeat counter (BRC) is a 16-bit register used to specify the number

of times a block of code is to be repeated when performing a block repeat. The block-

repeat start address (RSA) is a 16-bit register containing the starting address of the

block of program memory to be repeated when operating in the repeat mode. The 16-

bit block-repeat end address (REA) contains the ending address if the block of

program memory is to be repeated when operating in the repeat mode.

15. Interrupt Registers (IMR, IFR)

The interrupt-mask register (IMR) is used to mask off specific interrupts

individually at required times. The interrupt-flag register (IFR) indicates the current

status of the interrupts.

16. Processor-Mode Status Register (PMST)

The processor-mode status registers (PMST) controls memory configurations

of the 67XX devices.

17. Power-Down Modes

There are three power-down modes, activated by the IDLE1, IDLE2, and

IDLE3 instructions. In these modes, the 67XX devices enter a dormant state and

dissipate considerably less power than in normal operation. The IDLE1instruction is

used to shut down the CPU. The IDLE2 instruction is used to shut down the CPU and

on-chip peripherals. The IDLE3 instruction is used to shut down the 67XX processor

completely. This instruction stops the PLL circuitry as well as the CPU and

peripherals.

RESULT

Thus the study of architecture TMS320VC67XX and its functionalities has been identified.

Ex. No: 10

Date:

AIM:

LINEAR CONVOLUTION

To perform the Linear Convolution of two given discrete sequence in

Code Composer Studio.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : Code Composer Studio version4

PROCEDURE:

1. Open Code Composer Studio v4.

2. To create the New Project

Project→ New (File Name. pjt, Eg: vvits.pjt)

3. To create a Source file

File →New→ Type the code (Save & give file name, Eg: sum.c).

4. To Add Source files to Project

Project→ Add files to Project→ sum.c

5. To Add rts.lib file & Hello.cmd:

Project→ Add files to Project→ rts6700.lib

Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.lib)

Note: Select Object& Library in (*.o,*.l) in Type of files

6. Project→ Add files to Project →hello.cmd

CMD file - Which is common for all non real time programs.

(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)

Note: Select Linker Command file (*.cmd) in Type of files

Compile:-

1. To Compile: Project→ Compile

2. To Rebuild: project → rebuild,

Which will create the final .out executable file. (Eg. vvit.out).

3. Procedure to Lode and Run program:

Load the Program to DSK: File→ Load program →vvit.out

To Execute project: Debug → Run

PROGRAM: (Linear Convolution)

#define xn 4

#define hn 4

void main()

{

 int *xval,*hval,*outval;

 int n,k,i;

 xval = (int *)0x80000000;

 hval = (int *)0x80001000;

 outval = (int *)0x80002000;

 for(i=0;i<(xn+hn-1);i++)

 {outval[i] = 0;xval[xn+i]=0;hval[hn+i]=0;}

 for(n=0;n<(xn+hn-1);n++)

 {

 for(k=0;k<=n;k++)

 outval[n] = (outval[n])+((xval[k])*(hval[n-k]));

 }

halt:

 goto halt;

}

 Sample Inputs and Outputs:

 Location Data

 x1(n) Input

 80000000h 00000001h
 80000004h 00000002h
 80000008h 00000001h
 8000000ch 00000000h

 x2(n) Input

 80001000h 00000001h
 80001004h 00000003h
 80001008h 00000001h
 8000100ch 00000003h

 y(n) Output

 80002000h 00000001h
 80002004h 00000005h
 80002008h 00000008h
 8000200ch 00000008h
 80002010h 00000007h
 80002014h 00000003h
 80002018h 00000000h

RESULTS:

Thus the C- Program for Linear convolution was written and the output was verified.

Ex. No: 11

Date:

AIM:

CIRCULAR CONVOLUTION

To perform the circular Convolution of two given discrete sequences in Code Composer Studio .

APPARATUS REQUIRED:

HARDWARE : Personal Computer

 SOFTWARE : Code Composer Studio version4

PROCEDURE:

1. Open Code Composer Studio v4.

2. To create the New Project

Project→ New (File Name. pjt, Eg: vvits.pjt)

3. To create a Source file

File →New→ Type the code (Save & give file name, Eg: sum.c).

4. To Add Source files to Project

Project→ Add files to Project→ sum.c

5. To Add rts.lib file & Hello.cmd:

Project→ Add files to Project→ rts6700.lib

Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.lib)

Note: Select Object& Library in (*.o,*.l) in Type of files

6. Project→ Add files to Project →hello.cmd

CMD file - Which is common for all non real time programs.

(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)

Note: Select Linker Command file (*.cmd) in Type of files

COMPILE:

1. To Compile: Project→ Compile

2. To Rebuild: project → rebuild,

Which will create the final .out executable file. (Eg. vvit.out).

3. Procedure to Lode and Run program:

Load the Program to DSK: File→ Load program →vvit.out

To Execute project: Debug → Run

PROGRAM: (Circular Convolution)

void main()

{

 int *in1,*in2,*out,*temp,i,sum=0,j;

 in1 = (int *)0x80000000;

 in2 = (int *)0x80001000;

 out = (int *)0x80002000;

 temp = (int *)0x80003000;

 for(i=0;i<4;i++)

 {

 if(i == 1)

 temp[i+2] = in1[i];

 else if(i == 3)

 temp[i-2] = in1[i];

 else

 temp[i] = in1[i];

 }

 for(i=0;i<4;i++)

 {

 sum = 0;

 for(j=0;j<4;j++)

 {

 sum+=(in2[j] * temp[j]);

 }

 out[i] = sum;

 rot(temp);

 }

 while(1);

}

rot(int *x)

{

 int t;

 t = x[0];

 x[0] = x[3];

 x[3] = x[2];

 x[2] = x[1];

 x[1] = t;

}

 Sample Inputs and Outputs:

 Location Data

 x1(n) Input

 80000000h 00000001h

 80000004h 00000002h

 80000008h 00000001h

 8000000ch 00000000h

 x2(n) Input

 80001000h 00000001h

 80001004h 00000002h

 80001008h 00000003h

 8000100ch 00000004h

 y(n) Output

 80002000h 0000000ch

 80002004h 00000008h

 80002008h 00000008h

 8000200ch 0000000ch

RESULT:

Thus the C- Program for Circular convolution was written and the output was verified.

Ex. No: 12

Date:

AIM:

FFT IMPLEMENTATION

To write a C- program to compute 8 – FFT of given sequences using DIF – FFT algorithm in

Code Composer Studio .

APPARATUS REQUIRED:

HARDWARE : Personal Computer

 SOFTWARE : Code Composer Studio version4

PROCEDURE:

1. Open Code Composer Studio v4.

2. To create the New Project

Project→ New (File Name. pjt, Eg: vvits.pjt)

3. To create a Source file

File →New→ Type the code (Save & give file name, Eg: sum.c).

4. To Add Source files to Project

Project→ Add files to Project→ sum.c

5. To Add rts.lib file & Hello.cmd:

Project→ Add files to Project→ rts6700.lib

Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.lib)

Note: Select Object& Library in (*.o,*.l) in Type of files

6. Project→ Add files to Project →hello.cmd

CMD file - Which is common for all non real time programs.

(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)

Note: Select Linker Command file (*.cmd) in Type of files

COMPILE:

1. To Compile: Project→ Compile

2. To Rebuild: project → rebuild,

Which will create the final .out executable file. (Eg. vvit.out).

3. Procedure to Lode and Run program:

Load the Program to DSK: File→ Load program →vvit.out

To Execute project: Debug → Run

PROGRAM: (FFT Implementation)

#define N 4

#define N2 (N << 1)

void main()

{

// variable declaration

 int *x,twid[8],temp;

 int ir,ii,tr,ti,ar,ai,br,bi,i,j,k,c,s,l;

 int m;

// address assignment

 x = (int *)0x80001000; /* both input and output here */

// twidle initialization

twid[0] = 1; /* REAL AND IMAGINARY PARTS PLACED ALTERNATIVELY*/

 twid[1] = 0;

 twid[2] = 1;

 twid[3] = 0;

 twid[4] = 1;

 twid[5] = 0;

 twid[6] = 0;

 twid[7] = -1;

// bit reverse action

 j = 1;

 for(i=1;i<N2;i+=2)

 {

 if(j>i)

 {

 {temp=x[j];x[j]=x[i];x[i]=temp;}

 {temp=x[j-1];x[j-1]=x[i-1];x[i-1]=temp;}

 }

 m = N2>>1;

 while(m >= 2 && j>m)

 {j-=m;

 m>>=1;}

 j+=m;

 }

// fft calculation starts here

 c = N2;

 k = 0;

 s = 4;

 for(l=1;l<=2;l++)

 {

 for(i=0,j=(2*l);i<c;i+=s,j+=s)

 {

 ir = x[j];

 ii = x[j+1];

 tr = twid[k++];

 ti = twid[k++];

 x[j] = (ir*tr) - (ii*ti);

 x[j+1] = (ir*ti) + (ii*tr);

 ar = x[i];

 ai = x[i+1];

 br = x[j];

 bi = x[j+1];

 x[i] = ar + br;

 x[i+1] = ai + bi;

 x[j] = ar - br;

 x[j+1] = ai - bi;

 }

 s = s/2;

 c = c/2;

 }

 while(1);

}

 Sample Inputs and Outputs:

 Input Data Memory:

 Address : RealData / Address : Immg.Data

 80001000 : 0x0001 / 80001004 : 0x0000
 80001008 : 0x0002 / 8000100C : 0x0000
 80001010 : 0x0003 / 80001004 : 0x0000
 80001018 : 0x0004 / 8000101C : 0x0000

 Output Data Memory:

 Address : RealData / Address : Immg.Data
 /
 80001000 : 0x000A (10) / 80001004 : 0x0000
 80001008 : 0xFFFE (-2) / 8000100C : 0x0002
 80001010 : 0xFFFE (-2) / 80001004 : 0x0000
 80001018 : 0xFFFE (-2) / 8000101C : 0xFFFE (-2)

RESULT:

Thus the C- Program for Circular convolution was written and the output was verified.

Ex. No: 13

Date:

AIM:

WAVEFORM GENERATION

To generate a sine wave and square wave using Code Composer Studio.

APPARATUS REQUIRED:

HARDWARE : Personal Computer

SOFTWARE : Code Composer Studio version4

PROCEDURE:

1. Open Code Composer Studio v4.

2. To create the New Project

Project→ New (File Name. pjt, Eg: vvits.pjt)

3. To create a Source file

File →New→ Type the code (Save & give file name, Eg: sum.c).

4. To Add Source files to Project

Project→ Add files to Project→ sum.c

5. To Add rts.lib file & Hello.cmd:

Project→ Add files to Project→ rts6700.lib

Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.lib)

6. Project→ Add files to Project →hello.cmd

CMD file - Which is common for all non real time programs.

(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)

Note: Select Linker Command file (*.cmd) in Type of files

COMPILE:

1. To Compile: Project→ Compile

2. To Rebuild: project → rebuild,

Which will create the final .out executable file. (Eg. vvit.out).

3. Procedure to Lode and Run program:

Load the Program to DSK: File→ Load program →vvit.out

To Execute project: Debug → Run

PROGRAM: (Sine waveform)

#include <stdio.h>

#include <math.h>

float a[500];

void main()

{

int i=0;

for(i=0;i<500;i++)

{

a[i]=sin(2*3.14*10000*i);

}

}

OUTPUT: (Sine waveform)

-

PROGRAM: (Square waveform)

#include <stdio.h>

#include <math.h>

int a[1000];

void main()

{

int i,j=0;

int b=5;

for(i=0;i<10;i++)

{

for (j=0;j<=50;j++)

{

a[(50*i)+j]=b;

}

b=b*(-1) ;

}

}

OUTPUT: (Square waveform)

RESULT:

Thus, the sine wave and square waveform was generated displayed at graph.

-

Ex. No: 14

Date:

INTERFACING OF LED

AIM:

To perform interfacing of LED using TMS320C67XX DSP KIT.

APPARATUS REQUIRED:

HARDWARE : Personal Computer & TMS320C67XX kit

SOFTWARE : Assembly Language

PROCEDURE:

1. Start VSI6713

2. In the Window of VI, Select workspace view (Menu –> VIEW–>Workspace)

3. Power on the DSK

4. Go to Menu -> Serial -> Port Settings; in the pop up window, set baud rate = 19200;

 Reset the DSK using the Button switch.

5. In Port Setting Window, click on “Autodetect” (Connection to DSK with PC is acknowledged thro

COM port)

6. Open new project (Menu -> Project -> New Project)

7. In the edit window of the workspace, type the assembly language programming and save it as ASM

File.

8. In Root Window of workspace, select Assembly -> Go to Menu -> Project -> Add File to Project –

Browse to the newly saved ASM File.

9. In Root Window of workspace, select Cmd Files -> Go to Menu -> Project -> Add File to Project –

Browse to the MICRO167.cmd file.

10. Go to Menu -> Project -> Build (compile/interpret will be completed without error)

11. Go to Menu -> Serial -> Load program -> browse to the new file saved with extension .ASC

12. Verify the program output in the DSK through LEDs.

-

 LED TEST PROGRAM

 .sect "00006000h"

 .text

start:

 mvkl .s1 0x000000AA,a4

 mvkl .s1 0x00000055,a6

 mvkl .s1 0x90040016,a3 ;LED OUT ADDRESS

 mvkh .s1 0x90040016,a3

 stb .d1 a4,*a3

 nop

 mvkl RET,b11

 mvkh RET,b11

 b delay

 nop

 nop 6

RET:

 stb .d1 a6,*a3

 nop

 mvkl start,b11

 mvkh start,b11

 b delay

 nop

 nop 6

delay:

 mvkl 0x0005ffff,b2

 mvkh 0x0005ffff,b2

rep:

 sub b2,1,b2

 nop

 nop 3

 [b2] b rep

 nop

 nop 6

 b b11

 nop

 nop 6

 .end

RESULT:

Thus, the interfacing of LED using TMS320C6713 was executed successfully.

